
    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	OpenERP OpenLib 0.2.4 documentation 
 
      

    


    
      
          
            
  
OpenERP OpenLib

You can download OpenLib on its github page : http://github.com/WE2BS/openerp-openlib


Note

This document refers to version 0.2.4




ORM Extension

OpenLib provides an extension to the basic OpenERP ORM. Its main goal is to simplify everyday call to the OpenERP
API. For example, you don’t have to pass the cr, uid or context variables anymore. The ORM Extension
is not intrusive, you can enable it on your objects if you want, but it’s not mandatory at all.



	1. OpenLib ORM Extension
	1.1. Introduction

	1.2. The ExtendedOsv class

	1.3. Query Objects

	1.4. Keywords arguments format












Github automatic bug reports

OpenLib integrates very well with GitHub and supports automatic bug reporting. This means that each time an exception
is raised in your code, OpenLib will check your github project and reports the bug it hasn’t been reported.

Of course, this won’t report any logical bugs (Like workflow errors, or “nothing happens” bugs), but code-related
bug will be reported, without any intervention from the user.



	1. OpenLib Github Integration
	1.1. Github module configuration

	1.2. Define the functions you want to watch

	1.3. Define the account used to report bugs












Global configuration

OpenLib let you define global variables (database-wide) easily.



	1. OpenLib Global Configuration
	1.1. Access a global variable

	1.2. Define a  global variable












Misc tools

Others tools provided by OpenLib.



	1. OpenLib Tools
	1.1. Date and time tools












Indices and tables


	Index

	Module Index

	Search Page









          

      

      

    


    
         Copyright 2011, Thibaut DIRLIK.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        	latest

      
        	0.2.5

      
        	0.2.4

      
    

  














  
    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	OpenERP OpenLib 0.2.4 documentation 
 
      

    


    
      
          
            
  
1. OpenLib ORM Extension


1.1. Introduction

To use the OpenLib ORM Extension, you must import ExtendedOsv and Q classes:

from openlib.orm import ExtendedOsv, Q





If you want your objects to natively support the extension, make them inherit from ExtendedOsv:

class MyObject(osv.osv, ExtendedOsv):
    ...





Because OpenERP native objects does not inherit from ExtendedOsv, you can’t directly call the new methods
on these objects pools. You will have to pass throught an object which inherits from ExtendedOsv.




1.2. The ExtendedOsv class


	
class openlib.orm.ExtendedOsv

	



Every object which inherit from this class can use the following methods. These methods support a
django-like style and doesn’t require you to pass them  cr, uid or context
variables. These variables are recovered from the execution stack. This means that you must have variables named
cr, uid, and context (optional) when you call these methods. Generally, these variables are passed by OpenERP.


Note

All the methods described below supports _cr, _uid and _context arguments to override the ones found
automatically in the python stack. We use _ at the begin of arguments for methods which support
django-like searching by arguments to avoid conflicts.




1.2.1. find


	
ExtendedOsv.find([q=None, _object=None, _offset=0, _limit=None, _order=None, _count=None, **kwargs])

	This methods is an equivalent to the builtin search() method but let you use a django-like syntax or
Q objects instead of the polish notation used in search().





	Parameters:	
	q – A Q object (the query).

	kwargs – Search keywords if you don’t use Q.






	Returns:	A list of integers, corresponding to ids found.








Note

If you specify one of the _limit, _offset, _order or _count arguments, they will be passed to search().







Examples

Find partners with name=’Agrolait’:

partners_ids = self.find(name='Agrolait', _object='res.partners')





Find partners with name=’Agrolait’ or ‘AsusTek’:

partners_ids = self.find(Q(name='Agrolait') | Q(name='AsusTek'), _object='res.partners')





In the case you are using find() on an object which inherit ExtendedOsv, you can omit the _object
argument:

objects_ids = self.find(name='OK')








1.2.2. filter


	
ExtendedOsv.filter([value=None, _object=None, **kwargs])

	This method is a kind of search-and-browse. It uses find() to search ids and then return the result of a
browse() call so you can iterate over the results.





	Parameters:	
	value – Can be a Q object or a list of ids.

	kwargs – Search keywords if you don’t specify value.






	Returns:	A list of objects as returned by browse().











If you specify a list of ids, find() is not called. The corresponding objects are immediatly returned.

Examples

Iterate over partners whose name starts with ‘A’:

for partner in self.filter(name__startswith='A', _object='res.partner'):
    ...





Almost same with a Q object:

for partner in self.filter(Q(name__startswith='A') | Q(name__startswith='B'), _object='res.partner'):
    ...





Iterate over a list of ids of one of our objects:

for obj in self.filter([1, 2, 3]):
    ...








1.2.3. get


	
ExtendedOsv.get([value=None, _object=None, **kwargs])

	This method act like filter() but returns only one object. value can be one of the following :



	An integer, then the object corresponding to this id is returned

	A string, then the object with this XMLID is returned

	A Q object, return the first object corresponding to the criteria.

	None, then the first object corresponding to the search keywords is returned










	Parameters:	
	value – The search criteria (see above)

	kwargs – If value is None, search keywords






	Returns:	An object as returned by browse() or None.











Examples

Returns the group whose XMLID is ‘group_employee’:

group = self.get('base.group_employee', _object='res.groups')





Returns the user with the id 1:

admin = self.get(1, _object='res.users')





Returns the first partner whose name is ‘Agrolait’:

partner = self.get(name='Agrolait', _object='res.partner')








1.2.4. get_pools


	
ExtendedOsv.get_pools(*args)

	An equivalent of sel.pool.get which supports more than one argument.





	Returns:	A list of pool objects for each pool name passed as argument.









Example

partner_pool, config_pool = self.get_pools('res.partner', 'openlib.config')








1.2.5. xmlid_to_id


	
ExtendedOsv.xmlid_to_id(cr, uid, xmlid, context=None)

	This method returns the database ID corresponding the xmlid passed, or None.


Note

This method does not uses automatic detection of cr, uid and context.












1.3. Query Objects


	
class openlib.orm.Q

	



This class let you create complex search query easily. It uses django-like keyword arguments to define search criteria.
These objects can be combined with & or | and prefixed with - to negate them :

criteria = Q(name='Peter', age=12) | Q(name='Paul')





This example will be translated into this SQL request :

(name='Peter' AND age=12) OR name='Paul'



Prefixing Q objects with a minus sign will negate them:

criteria = -Q(name='Paul')





Which means name IS NOT Paul. You can create complex search expressions like this one :

criteria = (Q(name='Paul') | Q(name='Pierre)) & Q(age=12)) | -Q(age=12)



For a detailed description the keywords arguments, read Keywords arguments format.




1.4. Keywords arguments format

With OpenLib, Q objects and ExtendedOsv class methods supports keyword argument formatting to specify
you search criteria. The simple form of the keyword argument is :

name='value'





Where name is the name of a column. But you can specify a lookup method using this syntax :

column__lookup='value'





Where lookup can be one of the following values :



	exact - The default, same as not specifying a lookup method.

	iexact - Same as exact, but case insensitive.

	like - Performes an SQL LIKE with the value.

	ilike - Same as like but case insensitive.

	gt - Greater than, same as ‘>’.

	lt - Lesser than, same as ‘<’.

	ge - Geather than or equal, same as ‘>=’.

	le - Lesser than or equal, same as ‘<=’.

	startswith / istartswith - A shortcut to LIKE 'Value%'. The value is like-protected (special chars like % or _ are escaped).

	endswith / iendswith - A shortcut to LIKE '%Value'. Value is like-protected.

	contains / icontains - A shortcut to LIKE '%Value%'. Value is like-protected.






The column name can be separated with ‘__’ to represent a relation:

Q(partner__address__country__code='Fr')






Warning

If you have a column which have the same name that a lookup method, you must repeat it (xxx__exact__exact).




1.4.1. Examples

Using Q objects:

self.filter(Q(name__startswith='P') | Q(age__gt=12))





Using relation without Q objects:

self.find(address__city='Paris', _object='res.partners')













          

      

      

    


    
         Copyright 2011, Thibaut DIRLIK.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        	latest

      
        	0.2.5

      
        	0.2.4

      
    

  














  
    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	OpenERP OpenLib 0.2.4 documentation 
 
      

    


    
      
          
            
  
1. OpenLib Github Integration

OpenLib provides an easy way to automatically report bugs which happen in your modules on github. You have to configure
the github repository you want to report bugs on, and it will work.


1.1. Github module configuration

For the example, we will imagine you are writing a module named example, hosted in a github repository named
openerp-example by the organization orga. You just have to add three variables to your module’s __init__.py :

GITHUB_ENABLED = True
GITHUB_REPO = 'openerp-example'
GITHUB_USER = 'orga'






Note

Setting GITHUB_ENABLED to False will disable github bug reporting. Remember to unset it during developpement.






1.2. Define the functions you want to watch

OpenLib can’t watch all your module’s method. You must tell it the one you want to watch. To do this, you just have
to import the report_bugs() function for openlib.github :

from openlib.github import report_bugs

class MyObject(osv.osv):

    @report_bugs
    def on_change_product(...):
        ...





Each time an exception is raised in this method, OpenLib will check if it has already been reported. If it’s not the case,
a new issue will be opened on the github project you specified in __init__.py.


Note

Using this decorator on a lot of functions won’t cause any performance problem. The only overhead is a try .. except
block around your method call, you won’t see the difference.






1.3. Define the account used to report bugs

To be able to report bugs, you must have a GitHub account. This configuration is done by database, and must be set
by the administrator into the menu Administration->Customization->Variables. There are two variables, named
GITHUB_USER and GITHUB_TOKEN you must fill.

You can find you token on your github account settings : Account settings->Account admin->API Token.


Note

OpenLib provides an installation wizard which does that automatically.









          

      

      

    


    
         Copyright 2011, Thibaut DIRLIK.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        	latest

      
        	0.2.5

      
        	0.2.4

      
    

  














  
    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	OpenERP OpenLib 0.2.4 documentation 
 
      

    


    
      
          
            
  
1. OpenLib Global Configuration

Sometimes, you need to store data not attached to a specific object, a kind of Global variable. OpenLib let you
do this with openlib.config object. This is a simple table with 3 columns, module, key and value.

This object implements the ExtendedOsv interface, so it can be manipulated easily. Data are stored as charfield
and have maximum size of 255 characters. You can store pickled object, if you want.


1.1. Access a global variable

OpenLib uses this object internally to store Github credentials, for example, if you want to get the github login:

login = self.pool.get('openlib.config').get(module='openlib.github', key='GITHUB_USER').value





This is the normal way, but openlib.config provides a method which returns None if the key is not defined:

login = self.pool.get('openlib.config').get_value('openlib.github', 'GITHUB_USER')






Note

The second way it the safest, because it won’t raise an AtributeError if the key is not defined.






1.2. Define a  global variable


1.2.1. With an XML file

You can easily create yours variables thanks to an XML file :

<?xml version="1.0" encoding="utf-8"?>
<openerp>
    <data>
        <record id="config_github_user" model="openlib.config">
            <field name="module">openlig.github</field>
            <field name="key">GITHUB_USER</field>
            <field name="help">GitHub user account used to report bugs.</field>
        </record>
        <record id="config_github_token" model="openlib.config">
            <field name="module">openlig.github</field>
            <field name="key">GITHUB_TOKEN</field>
            <field name="help">GitHub token associated to the account. Check your account settings.</field>
        </record>
    </data>
</openerp>





You can provide a default value, just by adding :

<field name="value">default_value</field>





Into the record.




1.2.2. With Python code

You can also update/create a configuration variable with Python. Like with when you access the variable, you have
two methods to do this : The normal way, and the shorter and recommended way :

Using write (normal way):

self.pool.get('openlib.config').write(cr, uid, config_id, {'value' : 'XXXXX'}, context=context)





Using this method implies that you already know the ID of the global variable object. If it does not exists,
you have to create it with the create() method. To make your life simpler, OpenLib provides a set_value method:

self.pool.get('openlib.config').set_value('openlib.github', 'GITHUB_USER', 'XXXXX')





This method will create the entry if it doesn’t exist, and update it if it does.









          

      

      

    


    
         Copyright 2011, Thibaut DIRLIK.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        	latest

      
        	0.2.5

      
        	0.2.4

      
    

  














  
    
      Navigation

      
        	
          index

        	
          modules |

        	
          previous |

        	OpenERP OpenLib 0.2.4 documentation 
 
      

    


    
      
          
            
  
1. OpenLib Tools

This module contains functions that could be useful.


1.1. Date and time tools

All these functions uses the OpenERP default timestamps by default as format.


	
openlib.tools.to_date(date_string, format=DEFAULT_SERVER_DATE_FORMAT)

	Converts the date_string passed as an argument to a datetime.date object.






	
openlib.tools.to_time(time_string, format=DEFAULT_SERVER_TIME_FORMAT)

	Converts the time_string argument to a datetime.time object.






	
openlib.tools.to_datetime(datetime_string, format=DEFAULT_SERVER_DATETIME_FORMAT)

	Converts the datetime_string argument to a datetime.datetime object.











          

      

      

    


    
         Copyright 2011, Thibaut DIRLIK.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        	latest

      
        	0.2.5

      
        	0.2.4

      
    

  














  
    
      Navigation

      
        	
          index

        	
          modules |

        	OpenERP OpenLib 0.2.4 documentation 
 
      

    


    
      
          
            

   Python Module Index


   
   o
   


   
     			

     		
       o	

     
       	[image: -]
       	
       openlib	
       

     
       	
       	
       openlib.github	
       Github automatic bug reporting.

     
       	
       	
       openlib.orm	
       An extension to the OpenERP ORM.

     
       	
       	
       openlib.tools	
       Utility functions.

   



          

      

      

    


    
         Copyright 2011, Thibaut DIRLIK.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        	latest

      
        	0.2.5

      
        	0.2.4

      
    

  














  
    
      Navigation

      
        	
          index

        	
          modules |

        	OpenERP OpenLib 0.2.4 documentation 
 
      

    


    
      
          
            

Index



 E
 | F
 | G
 | O
 | Q
 | T
 | X
 


E


  	
      
  	ExtendedOsv (class in openlib.orm)
  


  





F


  	
      
  	filter() (openlib.orm.ExtendedOsv method)
  


  

  	
      
  	find() (openlib.orm.ExtendedOsv method)
  


  





G


  	
      
  	get() (openlib.orm.ExtendedOsv method)
  


  

  	
      
  	get_pools() (openlib.orm.ExtendedOsv method)
  


  





O


  	
      
  	openlib.github (module)
  


      
  	openlib.orm (module)
  


  

  	
      
  	openlib.tools (module)
  


  





Q


  	
      
  	Q (class in openlib.orm)
  


  





T


  	
      
  	to_date() (in module openlib.tools)
  


      
  	to_datetime() (in module openlib.tools)
  


  

  	
      
  	to_time() (in module openlib.tools)
  


  





X


  	
      
  	xmlid_to_id() (openlib.orm.ExtendedOsv method)
  


  







          

      

      

    


    
         Copyright 2011, Thibaut DIRLIK.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        	latest

      
        	0.2.5

      
        	0.2.4

      
    

  














  _static/minus.png





_static/comment-bright.png





search.html

    
      Navigation


      
        		
          index


        		
          modules |


        		OpenERP OpenLib 0.2.4 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2011, Thibaut DIRLIK.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		latest


      
        		0.2.5


      
        		0.2.4


      
    


  












  

_static/comment-close.png





_static/up-pressed.png





_static/up.png





_modules/index.html

    
      Navigation


      
        		
          index


        		
          modules |


        		OpenERP OpenLib 0.2.4 documentation »

 
      


    


    
      
          
            
  All modules for which code is available


		openlib.orm


		openlib.tools






          

      

      

    


    
        © Copyright 2011, Thibaut DIRLIK.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		latest


      
        		0.2.5


      
        		0.2.4


      
    


  












  

_static/down.png





_static/plus.png





_static/comment.png





_static/ajax-loader.gif





_static/file.png





_static/down-pressed.png





